89 research outputs found

    Domination number of graphs with minimum degree five

    Full text link
    We prove that for every graph GG on nn vertices and with minimum degree five, the domination number γ(G)\gamma(G) cannot exceed n/3n/3. The proof combines an algorithmic approach and the discharging method. Using the same technique, we provide a shorter proof for the known upper bound 4n/114n/11 on the domination number of graphs of minimum degree four.Comment: 17 page

    Transversal designs and induced decompositions of graphs

    Get PDF
    We prove that for every complete multipartite graph FF there exist very dense graphs GnG_n on nn vertices, namely with as many as (n2)−cn{n\choose 2}-cn edges for all nn, for some constant c=c(F)c=c(F), such that GnG_n can be decomposed into edge-disjoint induced subgraphs isomorphic to~FF. This result identifies and structurally explains a gap between the growth rates O(n)O(n) and Ω(n3/2)\Omega(n^{3/2}) on the minimum number of non-edges in graphs admitting an induced FF-decomposition

    The Disjoint Domination Game

    Full text link
    We introduce and study a Maker-Breaker type game in which the issue is to create or avoid two disjoint dominating sets in graphs without isolated vertices. We prove that the maker has a winning strategy on all connected graphs if the game is started by the breaker. This implies the same in the (2:1)(2:1) biased game also in the maker-start game. It remains open to characterize the maker-win graphs in the maker-start non-biased game, and to analyze the (a:b)(a:b) biased game for (a:b)≠(2:1)(a:b)\neq (2:1). For a more restricted variant of the non-biased game we prove that the maker can win on every graph without isolated vertices.Comment: 18 page

    K3K_3-WORM colorings of graphs: Lower chromatic number and gaps in the chromatic spectrum

    Get PDF
    A K3K_3-WORM coloring of a graph GG is an assignment of colors to the vertices in such a way that the vertices of each K3K_3-subgraph of GG get precisely two colors. We study graphs GG which admit at least one such coloring. We disprove a conjecture of Goddard et al. [Congr. Numer., 219 (2014) 161--173] who asked whether every such graph has a K3K_3-WORM coloring with two colors. In fact for every integer k≥3k\ge 3 there exists a K3K_3-WORM colorable graph in which the minimum number of colors is exactly kk. There also exist K3K_3-WORM colorable graphs which have a K3K_3-WORM coloring with two colors and also with kk colors but no coloring with any of 3,…,k−13,\dots,k-1 colors. We also prove that it is NP-hard to determine the minimum number of colors and NP-complete to decide kk-colorability for every k≥2k \ge 2 (and remains intractable even for graphs of maximum degree 9 if k=3k=3). On the other hand, we prove positive results for dd-degenerate graphs with small dd, also including planar graphs. Moreover we point out a fundamental connection with the theory of the colorings of mixed hypergraphs. We list many open problems at the end.Comment: 18 page

    F-WORM colorings: Results for 2-connected graphs

    Get PDF
    Given two graphs F and G, an F-WORM coloring of G is an assignment of colors to its vertices in such a way that no F-subgraph of G is monochromatic or rainbow. If G has at least one such coloring, then it is called F-WORM colorable and W−(G,F) denotes the minimum possible number of colors. Here, we consider F-WORM colorings with a fixed 2-connected graph F and prove the following three main results: (1) For every natural number k, there exists a graph G which is F-WORM colorable and W−(G,F)=k; (2) It is NP-complete to decide whether a graph is F-WORM colorable; (3) For each k≥|V(F)|−1, it is NP-complete to decide whether a graph G satisfies W−(G,F)≤k. This remains valid on the class of F-WORM colorable graphs of bounded maximum degree. We also prove that for each n≥3, there exists a graph G and integers r and s such that s≥r+2, G has Kn-WORM colorings with exactly r and also with s colors, but it admits no Kn-WORM colorings with exactly r+1,…,s−1 colors. Moreover, the difference s−r can be arbitrarily large. © 2017 Elsevier B.V
    • …
    corecore